순환신경망(RNN)의 개념 순환신경망(Recurrent Neural Network, RNN)은 입력과 출력을 시퀀스(Sequence) 단위로 처리하는 모델이다. 여기서 시퀀스란 연관된 연속의 데이터를 의미하며, 시계열 데이터에 적합한 신경망 모델이라 할 수 있다. ex) 자연어 처리, 순서를 가지는 정보, 연속적인 시간 간격으로 배치된 데이터 심층 신경망(Deep Neural Network, DNN)의 경우 파라미터들이 모두 독립적이었으나, RNN의 파라미터들은 모두 공유하는 것이 특징이다. 장기 의존성 문제점 (Long-Term Dependency Problem) 일반적인 RNN의 경우 짧은 시퀀스를 처리할 경우 유리하며, 관련 정보와 그 정보를 사용하는 지점 사이 거리가 멀어지는 경우 학습 능력이 현..