머신러닝(딥러닝 포함)의 작업에 대해서 아직 많은 사람들이 어떤 부분들이 중요한지 모르며, 간혹 자신의 역할이 매우 작은것이라 생각해서 업무를 비하하는 사람들이 많다. 특히, 데이터 전처리의 경우 "전처리"라는 명칭 때문에 자신의 작업은 사소하고, 마치 축구에서 수비수의 역할과 같다 생각해서 일을 그만두고 모델러로 전향하는 경우가 많은데 정말 잘못된 생각이라 말을 하고 싶다. 머신러닝의 작업 플로우 데이터 수집 (Data Acquisition) 데이터 수집 이전에 데이터 설계, 데이터의 분석 등이 전제되어야 하겠지만 그 부분을 배제하고 개발단으로 설명을 하자면 제일 먼저 데이터를 수집해야 될 것이다. 자연어처리(NLP)의 경우 말뭉치를 만든다던지, 분석을 위한 기본 데이터(Raw Data) 뿐만 아니라 ..