이 포스팅은 직접 구현해본 나이브 베이즈 분류기 #1에 연이은 포스팅으로 #1을 아직 못보신 분들은 이전 포스팅을 읽고 오셔야 이해가 될 것이다. #1 포스팅을 보고 싶으면 본 포스팅의 끝에 있는 연관 글을 찾고 해당 글을 클릭하면 된다. 빈도테이블의 값 출력(디버깅) for(String feat : freqMap.keySet()) { System.out.println(feat + "=>" + freqMap.get(feat)); } temperature=>{mild={no=2, yes=4}, cool={no=1, yes=3}, hot={no=2, yes=2}} humidity=>{normal={no=1, yes=6}, high={no=4, yes=3}} outlook=>{rainy={no=2, yes=3..
이 포스팅은 머신러닝 알고리즘 중 하나인 나이브 베이즈 분류기를 자바(Java)로 구현해본 것으로 개발자가 쉽게 접근할 수 있는 것을 목표로 합니다. 쉽고 강력한 머신러닝, 나이브 베이즈 분류 (Naive Bayes Classification) 쉽고 강력한 머신러닝, 나이브 베이즈 분류 (Naive Bayes Classification) ※ 베이즈 정리를 모르는 분들은 나이브 베이즈를 알기에 앞서 베이즈 정리에 대해서 먼저 이해해야 한다. 확률의 함정을 간파, 베이즈 정리(Bayes' Theorem) 확률의 함정을 간파, 베이즈 정리(Bayes' T needjarvis.tistory.com 포스팅에서 설명하는 스텝 즉 나이브베이즈의 정석인 사전확률, 우도, 사후확률을 쉽게 이해하고자 각각 메소드로 구현을..
파이썬은 데이터 분석에 매우 강력한 기능을 제공하고 있고, 나이브베이즈와 같은 머신러닝은 sklearn(sk런 혹은 사이킷 런이라고 말함)에서 다양한 라이브러리를 제공한다. 나이브베이즈에 대해서 제대로 모르는 분들이 계시다면, 우선 필자가 작성했던 나이브베이즈 포스팅을 보면 이해가 될 것이다. 쉽고 강력한 머신러닝, 나이브 베이즈 분류 (Naive Bayes Classification) 쉽고 강력한 머신러닝, 나이브 베이즈 분류 (Naive Bayes Classification) ※ 베이즈 정리를 모르는 분들은 나이브 베이즈를 알기에 앞서 베이즈 정리에 대해서 먼저 이해해야 한다. 확률의 함정을 간파, 베이즈 정리(Bayes' Theorem) 확률의 함정을 간파, 베이즈 정리(Bayes' T needja..
※ 베이즈 정리를 모르는 분들은 나이브 베이즈를 알기에 앞서 베이즈 정리에 대해서 먼저 이해해야 한다. 확률의 함정을 간파, 베이즈 정리(Bayes' Theorem) 확률의 함정을 간파, 베이즈 정리(Bayes' Theorem) 베이즈 정리는 일반인들이 알고 있던 통계의 지식을 무너트리는 역할을 한다. 물리학도가 양자역학의 개념을 배울 때 새로운 신세계가 열리는 것처럼 통계에서 베이즈가 그런 역할을 하는 것 needjarvis.tistory.com 나이브 베이즈(Naïve Bayes Classification)의 개념 - 데이터가 각 클래스에 속할 특징 확률을 계산하는 조건부 확률 기반의 분류 방법이다. - 나이브(Naïve) : 예측한 특징이 상호 독립적이라는 가정 하에 확률 계산을 단순화, 나이브라는..